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Abstract The problem considered in this paper arises in the design of a high-temperature superconduct-
ing cryogenic current comparator (CCC). The CCC consists of two currents flowing in opposite directions
inside a toroidal superconducting shield. The shield has a radial cut, necessary for the measurement of the
current ratio, but causing an error in the obtained ratio. The problem of interest is the dependence of the
error on the geometric parameters of the device: the major and minor radii of the shield, the cut width,
the material thickness, and the location of the currents. In the first part of the paper, a toroidal shield
with an infinitesimal cut is considered and analytic expressions are derived for the magnetic field and the
surface-current distribution. In the second part, a cut of finite width is introduced. Since all the perturbing
currents are present in the narrow region around the cut, a shield of cylindrical shape is assumed. Expres-
sions are derived for the flux through the cut and the magnetic field around the cut. Analytical results are
in good agreement with the numerical results obtained by a finite-element method. In the final part, the
expression for the ratio error is derived, which shows that in order to minimize the error, currents should
be concentrated around the shield axis, the major radius of the shield should be maximized and the bore
radius minimized. The error depends logarithmically on the cut width.

Keywords Conformal mapping · Green’s functions · Superconducting devices

1 Introduction

We consider the magnetic field generated by currents enclosed by a superconducting sheath of both toroi-
dal and cylindrical shape. The problem comes from the design of a cryogenic current comparator (CCC),
which as a current amplifying device has unsurpassed accuracy. In precision electrical metrology CCC’s are
widely used for resistance scaling from the quantum Hall-effect standard [1] and for the amplification of
currents generated by single electron-tunneling (SET) devices [2, 3]. They are also used for low dc [4] and
ac [5] resistance measurements. A CCC is an integral part of the quantum metrological triangle experiment
that is currently under development [6]. The aim of the experiment is to accurately test the consistency of
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the fundamental constants involved in the three quantum effects: Josephson, quantum Hall and SET. In
this experiment a CCC is used to amplify the current produced by a quantum current source (the R-pump
[7, 8]). This current then passes through the two-dimensional electron gas of a semiconducting device in
a high magnetic field, with the transverse Hall voltage being compared to the Josephson-array voltage
standard. In combination with the cryogenic capacitor standard [9], the experiment will provide informa-
tion for the possible future adjustments of the fundamental physical constants involved in the above three
effects [10].

In a CCC, two circular wire coils of N1 and N2 turns, carry currents I1 and I2, respectively, in the opposite
direction. The magnetic field at the centre of the coils is sensed by a superconducting quantum interference
device (SQUID). For a fixed input current I1, the current I2 is adjusted via a feedback system connected
to the SQUID, until the ampere-turns of the two currents are balanced. In such a way, the CCC acts as a
current transformer, with the output current I2 being equal to I1N1/N2 at balance. Ideally, for such system
to work, the two wire coils would have to coincide with the same circle, which, owing to the finite thickness
of the wires, is not possible. To remove the dependence of the magnetic field (sensed by the SQUID) on
the location of the wires, all the windings are enclosed by a superconducting torus. Owing to the Meissner
effect, a supercurrent is induced on the inner surface of the torus, with its integral over the inner surface
being equal to the ampere-turn imbalance in the windings. If such a torus had an infinitesimal cut in the
half-plane containing the rotational axis of symmetry of the torus, this surface supercurrent would, after
reaching the cut, flow along the cross-section of the cut and then loop around the outer surface of the torus,
allowing the ampere-turn imbalance to be detected by the SQUID (in the absence of the cut no current
would flow on the outside surface, and no magnetic field would be sensed by the SQUID). The supercur-
rent distribution on the inner surface would depend on the mutual inductance between the supercurrent
filaments and the windings, which, in turn, is dependent on the winding locations. On the other hand, the
supercurrent distribution on the outer surface would be independent of the location of the windings inside
the torus.

In practice, however, the cut has small but finite width (a fabricated solid torus is cut, usually by a
diamond saw). This exposes the wires to the outside, and therefore the flux measured by the SQUID at
the torus centre is affected by the location of the wires. A typical size of the torus is several centimeters in
diameter and the cut is about a millimeter. Since a CCC is usually required to have the highest possible
accuracy, the effect of the finite cut cannot be neglected. In this paper we derive an analytic expression for
the magnetic flux leakage through the cut area, and also an expression for the magnetic field at the SQUID
location, both as functions of the geometric parameters of the problem.

In most applications, low-temperature superconducting (LTS) materials, such as lead, are used for
shielding. These materials, in the form of a thick foil, can be easily folded in such a form that the torus ends
overlap while being electrically insulated. In that way, the effect of the cut can be screened by increasing
the overlapping region, so that for large-enough overlap the SQUID detects only the magnetic field of the
equilibrium supercurrents flowing on the outside surface of the shield [11]. Aspects of the LTS CCC design
have been considered for example in [12] and [13].

Cylindrical shields made of high-temperature superconducting (HTS) materials were considered for
noninvasive measurements of the current carried by charged-particle beams [14], and resistance ratio
measurements [15]. Such a CCC can be used at liquid Nitrogen temperatures, therefore reducing the
cost and complexity associated with using liquid Helium necessary for the operation of a LTS CCC. We
consider here a toroidal shield corresponding to the design studied experimentally in [16, 17]. The HTS
materials are generally much more difficult to use than the LTS ones. They are brittle and are susceptible
to distortion and cracking, making the process of obtaining the desired shape time-consuming. Details of
such fabrication, using YBCO powder as the HTS material, are given in [17]. For design purposes it is
necessary to have an analytic expression for the ratio error of the CCC as a function of the geometry of
the device. That is the goal of our study.
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The paper is organized as follows. In Sect. 2, we consider a toroidal shield with infinitesimal cut and
derive an analytic expression for the magnetic field inside and outside the torus. In Sect. 3, we introduce a
cut of finite width in the shield, and assuming the shield to be cylindrical we find the analytic expressions
for the magnetic field and the leakage flux through the cut. In Sect. 4 we obtain the ratio error of the CCC.
A summary is presented in Sect. 5.

2 Toroidal shield

We start by considering a closed superconducting torus enclosing a current filament. We make the assump-
tion of ideal diamagnetic behaviour of the superconductor, which is justified in practice, since the typical
thickness of the shield is much larger than the London penetration depth. We are interested in deriving
an analytic expression for the magnetic field inside the torus. Figure 1 shows the schematic drawing of
the device (Note that the cut in the shield is not to scale. In this section the cut is considered to have
infinitesimal width. A cut of finite width is treated in the following section).

In the Coulomb gauge, the magnetic vector potential A satisfies the vector Poisson’s equation:

�A = −μ0j. (1)

The natural choice of the coordinate system is the toroidal one (Fig. 2), whose coordinates (η, θ ,ψ), with
0 ≤ η < +∞, −π < θ ≤ π , 0 ≤ ψ < 2π , are related to the Cartesian coordinates as follows:

x = a sinh η cosψ

cosh η − cos θ
, y = a sinh η sinψ

cosh η − cos θ
, z = a sin θ

cosh η − cos θ
, (2)

where a is the radius of the toroidal axis (corresponding to η → ∞). The coordinate surfaces are toroids
for η = η0 (with major radius a coth η0 and minor radius a csch η0), spherical bowls for θ = ±θ0 (of radius
a csc θ0 with centers at ±a cot θ0 along the z-axis), and half planes for ψ = ψ0 (bordered by the z-axis,
which corresponds to η = 0). The line element is given by ds2 = gijdxidxj with the metric tensor gij = δi

jh
2
i ,

where δi
j is the Kronecker delta, and the scale factors are given by

hη = hθ = a
cosh η − cos θ

, hψ = a sinh η

cosh η − cos θ
. (3)

In order to solve Eq. 1 we will make use of the vector Green’s theorem [18, Part II, p. 1768]:∫
(E�F − F�E)dv =

∮ {
(E∇F − F∇E)n̂ − [

E(n̂ × curl F)+ curl E(n̂ × F)
]}

dS, (4)

Fig. 1 Toroidal
superconductor enclosing
a current carrying
filament. The filament
represents the unbalanced
current resulting from the
difference of two currents
flowing in opposite
directions inside the torus
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Fig. 2 Toroidal system of coordinates is shown on the left. The cross-section with the half-planes ψ = 0 and ψ = π gives
the bipolar system shown on the right. Using Eq. 2, we may express the relation between toroidal and cylindrical coordinates
(r,ψ , z) as z + i r = a coth[(θ − i η)/2]

where the vector Laplacian is given by

�E = grad div E − curl curl E. (5)

By using (3) and taking into account the axial symmetry of the generated field, we obtain for the left-hand
side of (1):

�A = ψ̂

[
�− 1

h2
ψ

]
Aψ(η, θ). (6)

The magnetic field is generated by the current filament located at (η = ηf , θ = θf ), so on the right-hand
side of Eq. 1 we have

j = I
hηhθ

δ(η − ηf )δ(θ − θf )ψ̂ . (7)

In order to derive the Green’s function for the Helmholtz-type equation obtained by substituting (6) and (7)
in (1), we start by considering the Green’s function for the scalar Poisson equation with the homogeneous
Dirichlet boundary condition Gs = 0 at η = η0 (the boundary condition which ensures that the normal
component of the magnetic field vanishes at the surface of the superconductor is Aψ(η0, θ) = A0/hψ and
we can choose the constant A0 = 0):

�Gs(r, r′) = −4πδ(r − r′). (8)

By using Eq. 2, we can express the inverse distance between two points in toroidal coordinates, which is
required for Gs, in terms of the Legendre functions Qν , by using the expansion [18, Part II, p. 1304]:

1√
cosh η − cos θ

=
√

2
π

∞∑
n=0

εnQn− 1
2
(cosh η) cos(nθ), (9)

where εn = 2 − δ0
n is the Neumann factor. Legendre functions can be expressed in terms of the associated

Legendre functions of the first and second kind, Pμν and Qμ
ν [19, pp. 1013–1014]:
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Qν

(
x1x2 −

√
x2

1 − 1
√

x2
2 − 1 cosφ

)
=

∞∑
k=0

εk(−1)kP−k
ν (x1)Q

k
ν (x2) cos(kφ), (1 < x1 < x2),

P−μ
ν (z) = �(ν − μ+ 1)

�(ν + μ+ 1)

(
Pμν (z)− e−μπ i sin(μπ)Qμ

ν (z)
)

.

(10)

For the half-integer degrees ν = n − 1/2, n = 0, 1, 2, . . . the associated Legendre functions are commonly
called the ring functions, and are the solutions of the Laplace equation in toroidal geometry. They appear,
for instance, in Coulomb and gravitational-potential problems [20–22] and in the expansion of a vacuum
magnetic field in stellarotors and tokamaks [23]. By separating the singular part of the Green’s function
and adding a linear combination of the ring functions so that the solution vanishes at the torus η = η0 we
obtain:

Gs = 1
aπ

√
(cosh η − cos θ)(cosh η′ − cos θ ′)

∞∑
m,n=0

εmεn(−1)m
�(n − m + 1

2 )

�(n + m + 1
2 )

cos[m(ψ − ψ ′)] cos[n(θ − θ ′)]

×
⎧⎨
⎩

Pm
n− 1

2
(cosh η)Qm

n− 1
2
(cosh η′)− f (m, η, η′), η′ > η,

Pm
n− 1

2
(cosh η′)Qm

n− 1
2
(cosh η)− f (m, η, η′), η′ < η,

(11)

where the function f is given by

f (m, η, η′) =
Pm

n− 1
2
(cosh η0)

Qm
n− 1

2
(cosh η0)

Qm
n− 1

2
(cosh η)Qm

n− 1
2
(cosh η′).

By using Eq. 8, the relationship between the unit vectors, ψ̂ = − sinψ x̂ + cosψ ŷ, and the Fourier series
expansion:

δ(ψ − ψ ′) = 1
π

∞∑
n=0

εn cos[n(ψ − ψ ′)], (12)

we can write:

�G̃ψ̂ = − 4π
hηhθhψ

δ(η − η′)δ(θ − θ ′)ψ̂ , (13)

where the Green’s function G̃ is given by

G̃ = −2
a

√
(cosh η − cos θ)(cosh η′ − cos θ ′)

∞∑
n=0

εn
�(n − 1

2 )

�(n + 3
2 )

cos[n(θ − θ ′)]

×
⎧⎨
⎩

P1
n− 1

2
(cosh η)Q1

n− 1
2
(cosh η′)− f (1, η, η′), η′ > η,

P1
n− 1

2
(cosh η′)Q1

n− 1
2
(cosh η)− f (1, η, η′), η′ < η.

(14)

By using Eq. 4, with G̃ from Eq. 14, and using the fact that A and G̃ satisfy the homogeneous Dirichlet
boundary condition, we obtain for the vector potential:

A = −ψ̂ μ0I
2π

sinh ηf

√
cosh η − cos θ

cosh ηf − cos θf

∞∑
n=0

εn
�(n − 1

2 )

�(n + 3
2 )

cos[n(θ − θf )]

×
⎧⎨
⎩

P1
n− 1

2
(cosh ηf )Q1

n− 1
2
(cosh η)− f (1, ηf , η), η > ηf ,

P1
n− 1

2
(cosh η)Q1

n− 1
2
(cosh ηf )− f (1, ηf , η), η < ηf .

(15)
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Since
√

cosh ηf Q1
n− 1

2
(cosh ηf ) → −πδ0

n/2
√

2 for ηf → ∞, we obtain from (15) for the special case of the

filament coinciding with the toroidal axis:

A = −μ0I√
2

√
cosh η − cos θ

[
P1

− 1
2
(cosh η)− Q1

− 1
2
(cosh η)P1

− 1
2
(cosh η0)/Q1

− 1
2
(cosh η0)

]
ψ̂ . (16)

The magnetic field is obtained by substituting the expression for the vector potential in:

B = ∇ × A = 1
hθhψ

∂

∂θ
(hψAψ)η̂ − 1

hηhψ

∂

∂η
(hψAψ)θ̂ . (17)

Equation 17 with the vector potential from (15) or (16) and the scale factors from (3) provides an ana-
lytic expression for the magnetic field inside the closed superconducting torus, generated by the current
filament. An example of the solution is shown in Fig. 3.

We point out that the derived Green’s function (14) can be used to solve related vector boundary-value
problems of elasticity for a torus, such as the one considered in [24], where instead of Eq. 1 for the magnetic
vector potential, a similar equation for the displacement vector has been considered.

We now introduce an infinitesimal cut in the shield, obtained by intersecting the toroidal surface η = η0
by the half-planeψ = ψ0 and consider the current distribution on the outside surface of the shield jψ(η0, θ).
By employing Eq. 4, we can write for the vector potential at an arbitrary point (η < η0, θ):

Aψ(η, θ) = μ0

4π

∫ π

−π
dθ ′hθ (η0, θ ′)hψ(η0, θ ′)jψ(η0, θ ′)G0(η, θ ; η0, θ ′), (18)

where G0 is the free-space Green’s function obtained from G̃ in (14) by omitting the f term in the curly
bracket. Since the toroid is superconducting, it constitutes the magnetic surface, and we can write for the
flux through any circle of intersection of the z=const plane and the torus as:

LI =
∮

Adl = 2πrAψ , (19)

where L is the self-inductance of the torus and r = r(η0, θ) is the radius of the circle centered at the z-axis.
By considering the point on the surface of the toroid in (18) and using (19), we obtain a Fredholm integral
equation of the first kind:

g(θ) =
∫ π

−π
dθ ′f (θ ′)K(θ , θ ′) (20)
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Fig. 3 Magnetic field for the filament located along the toroidal axis of the superconducting torus. The parameters are:
I = 1 A, a = 10 mm, η0 = 1·522. On the left graph, the magnetic field is plotted in the plane of symmetry of the torus; the
horizontal axis indicates the radial distance from the z-axis. The ring functions P1

1/2, Q1
1/2 have a single branch cut from −∞

to +1, and a logarithmic singularity at the location of the filament. On the right graph, the magnetic field is plotted versus the
distance along the circle given by the intersection of the torus η = 2 and a plane containing the z-axis, starting from the point
η = 2, θ = 0 in the plane. The lines on the graphs show analytic solutions and the solid dots are numerical solutions obtained
by a finite-element method. In the numerical approach, the cross-section of the torus is divided into a mesh of triangles and
the solution is obtained by minimizing the total energy. At each point within an element, the solution is obtained by a linear
interpolation of the values at the three vertices of the triangle. On the graphs, B is given in units of μT and x in mm
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for the unknown function:

f (θ ′) = jψ(η0, θ ′)
(cosh η0 − cos θ ′)3/2LI

with the symmetrized kernel:

K(θ , θ ′) = G0(η0, θ ; η0, θ ′)
[(cosh η0 − cos θ)(cosh η0 − cos θ ′)]1/2

,

and where the left-hand side is given by

g(θ) = 2
μ0

√
cosh η0 − cos θ

(a sinh η0)3
.

We obtain the solution of the above Eq. 20 by a Fourier series expansion:

2
μ0

1
r(η0, θ)

=
∑

k

gkφk(θ), f (θ ′) =
∑

l

flφl(θ
′), (21)

where φ(θ) are the eigenfunctions of K(θ , θ ′). We can write the solution in the matrix form:

F = K−1G, (22)

where F and G are the matrices of coefficients in (21), and K is a diagonal matrix:

Kkl =
∫

dθ
∫

dθ ′K(θ , θ ′)φk(θ)φl(θ
′). (23)

Using the integral representation of the associated Legendre functions [19, p. 1001]:

Qμ
ν (z) = eμπ i�(μ+ 1/2)(z2 − 1)

μ
2√

2π

{∫ π

0
dt

t cos(ν + 1/2)
(z − cos t)μ+1/2

− cos νπ
∫ ∞

0
dt

e−(ν+1/2)t

(z + cosh t)μ+1/2

}
, (24)

and relations (10), we can expand the left-hand side in (20) to obtain the coefficients matrix G. Using the
fact that the total current is given by I = ∫

jψhθdθ , we eliminate the self-inductance and finally obtain:

jψ(θ) = I

a
√

2

(cosh η0 − cos θ)3/2

ϒ(cosh η0)

∞∑
l=0

cos(lθ)

(1 + δ0
l )P

1
l−1/2(cosh η0)

, (25)

where the function ϒ is given by

ϒ(z) =
∞∑

l=0

2zQl−1/2(z)− Ql−3/2(z)− Ql+1/2(z)

(1 + δ0
l )P

1
l−1/2(z)

. (26)

While the current distribution on the inside surface of the toroid, obtained by substituting (15) in (1), is
dependent on the location of the filament (being highest at the points closest to the filament and lowest
at those diametrally opposite), the distribution given by (25) is independent of the filament location. It is
symmetric with respect to the z = 0 plane and increases from θ = 0 to θ = π as represented on Fig. 4.

By substituting the expression for the current density (25–26) in (18), we obtain for the vector potential
outside the torus:

A = −2
√

2μ0I
sinh η0

√
cosh η − cos θ

ϒ(cosh η0)

×
∞∑

n=0

1
(1 + δ0

n)(4n2 − 1)

Q1
n−1/2(cosh η0)

P1
n−1/2(cosh η0)

P1
n−1/2(cosh η) cos(nθ)ψ̂ . (27)

The independence of the magnetic field, corresponding to the above vector potential, on the filament loca-
tion constitutes the ideal behaviour of a CCC. In particular, for two equal-magnitude currents of opposite
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direction, at arbitrary locations inside the torus, the magnetic field vanishes everywhere outside the torus.
Initially if currents are not of equal magnitude, then, by measuring the magnetic field at any point outside
the torus, one can adjust one of the currents until this magnetic field vanishes, which would then ensure that
the currents are of equal magnitude. In practice, however, in order to let the current flow on the outside
surface, a cut of finite width is introduced. In this case the magnetic field depends on the filament locations,
and even when the currents are of equal magnitude, the magnetic field is nonzero. This represents an error
in the CCC ratio. We will consider the consequence of the finite cut in the following section.

3 Shield with a thin cut

We now consider the case when the superconducting shield has a radial cut through which the magnetic
field “escapes”. We introduce the cut as a perturbation in the boundary layer (a general discussion of singu-
lar perturbations can be found, for example, in [25, Chap. 3.3]). We are interested in calculating the flux of
the magnetic field through the cut as a function of the location of the current filament, the thickness of the
shield and the width of the cut. We can represent the currents at the outer surface of the superconductor as
j = j0 + j′, where j0 = jψψ̂ is the current distribution (25) in the limit of an infinitesimal cut width, and j′ is
the perturbing current distribution due to the finite size of the cut. Since we consider the case of a thin cut,
these perturbing currents are located at two narrow symmetrical segments of the torus around the cut. We
can approximate these by two strips around the cross-sectional cut of the infinite cylinder and therefore
we perform the calculations below in a cylindrical coordinate system.

For subsequent derivations we will need the expressions for the magnetic field, inside and outside the
cylinder, far away from the cut. We obtain these by solving Eq. 1 in cylindrical coordinates (ρ, z,φ) using
the method of the previous section. The current filament, parallel to the z-axis and located at (ρ′,φ′), is
surrounded by a superconducting cylinder of radius ρ0, with axis coinciding with the z-axis. We obtain for

Fig. 4 Surface-current
distribution along the
superconducting torus
η0 = 0·5, 1, 2 and 3 (curves
further from the origin
correspond to higher
values of η0). The graph is
a polar plot of ajψ(α)/I
obtained using (25) with
θ = arctan[sin α sinh η0/

(a + cosα cosh η0)], where
α is the polar angle in the
coordinate system with
the origin at
a coth η0, z = 0,
corresponding to the
centre of the circle of
intersection of a torus and
the half-plane ψ =const
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the magnetic vector potential inside the cylinder:

A = −μ0I
4π

log
ρ2

0 [ρ′2 − 2ρρ′ cos(φ − φ′)+ ρ2]
ρ4

0 − 2ρρ′ρ2
0 cos(φ − φ′)+ ρ2ρ′2 ẑ. (28)

On the outside surface of the cylinder, the current is uniformly distributed so that we have:

A = −μ0I
2π

log
ρ

ρ0
ẑ. (29)

We show in the Appendix, that our approximation is justified in the limit η0 � 1 where the vector poten-
tials inside the torus, Eq. 15, and outside, Eq. 27, approach the corresponding expressions (28) and (29) in
the case of a cylindrical shield.

In the following we will make use of the scalar magnetic potential �, defined outside the region with
currents as:

B = −∇�. (30)

Using (28), we obtain inside the cylinder:

� = −μ0I
2π

arctan
ρ(ρ2

0 − ρ′2) sin(φ − φ′)
ρ(ρ2

0 + ρ′2) cos(φ − φ′)− ρ′(ρ2
0 + ρ2)

. (31)

For the outside region, we have:

� = −μ0Iφ
2π

. (32)

We now introduce a cut in the shield (from z = −c to z = c) and are looking for the solution of the Laplace
equation:

�� = 0 (33)

in the form

� =
∞∑

n=1

ζn(ρ, z) sin[n(φ − φ′)], (34)

which away from the cut reduces to (31) and (32) inside and outside the cylinder, respectively. Substituting
(34) in (33) gives the equation for the Fourier-series coefficients:

∂2ζn

∂ρ2 + 1
ρ

∂ζn

∂ρ
+ ∂2ζn

∂z2 − n2

ρ2 ζn = 0. (35)

Assuming that ρ0/max(b, c) � 1, where 2b is the thickness of the shield, and introducing the variable
y = ρ − ρ0, we can approximate Eq. 35 near the cut by

∂2ζn

∂y2 + ∂2ζn

∂z2 = 0. (36)

In order to solve the above equation, we perform the Schwarz-Christoffel mapping (Fig. 5) from T =
{t|Im t > 0} onto the interior of the polygon w1, . . . , w8 in the W plane by

dw
dt

= C
8∏

i=1

(t − ri)
αi/π−1, (37)

where αi is the interior angle at the vertex wi. We let wi → ∞ for i = 2, . . . , 7, and by the Riemann mapping
theorem there are three degrees of freedom in the map, so that we can choose r2 = 0, r5 = ∞ and r8 = −1.
We thus have:

w = C
∫ t

r1

√
z + 1

√
z − r1√

z3
dz + w1. (38)
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w1

w2w3

w4 w5

w6w7

w8

r8 r1

W T

y

z s

r

Fig. 5 By the mapping (37), the negative real semi-axis in the T -plane is mapped onto the surface of the superconductor
in the W-plane, and the positive real semi-axis in the T -plane is mapped onto the entire real axis in the W-plane. The
positive imaginary semi-plane in T is mapped onto the region outside the superconductor of the positive imaginary part of
the W-plane. Using the Schwarz reflection principle, we can continue the mapping (37) analytically into the s < 0 half-plane

Considering the points w = ic, and w = b + ic, we have the equation:
∫ r∗

r1

√
z + 1

√
z − r1√

z3
dz =

∫ −1

r∗

√
z + 1

√
z − r1√

z3
dz, (39)

which we solve for r∗. By doing so we obtain that w = ic corresponds to r∗ = −√−r1. By integrating over
the semicircle of radius |r∗| in the positive imaginary part of the T -plane (this equipotential is mapped
onto the segment [0, ic] of the imaginary axis in the W-plane) we obtain for the affine constant:

C = c

2(1 + √
k)E

[
4
√

k
(1+√

k)2

] , (40)

where we have denoted the prevertex as r1 = −k. In the above equation, E is the complete elliptic integral
of the second kind and k is the solution of the following equation:

π

32
1 − k

k3/2(1 + √
k)E

[
4
√

k
(1+√

k)2

]F
(

3
2

,
3
2

; 3;
k − 1

k

)
= b

c
, (41)

where F is the Gauss hypergeometric function. As a function of the ratio b/c, k is represented in Fig. 6.

Fig. 6 Distance from the
origin of the prevertex r1
as a function of the ratio
of superconducting wall
thickness and cut width
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By means of the mapping (38), the function ζn(y(r, s), z(r, s)) is a conformal counterpart of the function
ξn satisfying the two-dimensional Laplace equation in the T -plane with the Neumann boundary condition:

∂ξn

∂s

∣∣∣∣
s=0

= 0. (42)

The harmonic function satisfying the above boundary condition and the symmetry of the problem is
given by:

ξn = PnRe
[
log t

] + Qn, (43)

where the coefficients Pn and Qn are determined from the requirement that the potential at the shield
surface approaches (31) and (32) inside and outside, respectively, at a distance pρ0 from the cut, where the
parameter p ∼ 1. In that way we obtain:

ξn = − μ0I

nπ log
[

1
k

(pρ0
2C

)4
]
(
ρ′

ρ0

)n

Re

{
log

[
t
(

2C
pρ0

)2
]}

, (44)

where we have used the fact that, under mapping (38), points w ∼ ±b + i(c + pρ0) on the outer side (upper
sign) and the inner side (lower sign) of the shield are the images of the points r+ and r−, respectively, and
|r+| = k/|r−| ∼ (

pρ0
2C )

2.
Our interest is to obtain the absolute value of the flux of the magnetic field through the cut (Bρ has the

opposite sign of sin(φ − φ′)). Using the above expression (44) for ξn, and Gauss’ theorem, we obtain for
this flux:

F = 4μ0Iρ0

log
[

1
k

(pρ0
2C

)4
]
{

Li2

[
ρ′

ρ0

]
− 1

4
Li2

[(
ρ′

ρ0

)2
]}

, (45)

where Li2(z) = − ∫ z
0 log(1 − z)d log(z) is the dilogarithm function. The magnetic flux as a function of

the superconducting shield thickness, as well as the filament location, are represented in Fig. 7. The inset
shows a comparison of the analytical and numerical solution obtained by commercial software. In the
numerical approach, a finite-element method was used, with the model being divided into a mesh of tet-
rahedra. Inside each element, the magnetic field was represented by a polynomial of the fourth degree
with unknown coefficients. The finite-element analysis results in the solution of a set of equations for the
unknown coefficients.

For the general ratio b/c the above Eq. 37 can be integrated explicitly in terms of elliptic integrals, but
the inverse function can only be expressed as a Lagrange series. Analytic expressions for the magnetic field
away from the gap can be obtained in the limit of negligible shield thickness (b/c → 0). In this case the
mapping (37) becomes:

w = c
2

(√
t − 1√

t

)
, (46)

which can be used to obtain the derivatives of ζn and the potential � along the gap in the superconductor
(|z| < c):

∂ζn

∂ρ

∣∣∣∣
ρ=ρ0

= μ0I

2π log
[

2pρ0
c

] 1
n

(
ρ′

ρ0

)n 1√
c2 − z2

, (47)

∂�

∂ρ

∣∣∣∣
ρ=ρ0

= μ0I

2π log
[

2pρ0
c

] tan−1
[

ρ′ sin(φ − φ′)
ρ0 − ρ′ cos(φ − φ′)

]
1√

c2 − z2
. (48)
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Fig. 7 Reduced flux F ′ = F/4μ0Iρ0

{
Li2

[
ρ′
ρ0

]
− 1

4 Li2

[(
ρ′
ρ0

)2
]}

as a function of the superconducting shield thickness. The

parameters of the shield are as in the experiment in [17]: ρ0 = 5 mm, b = 1 mm, and c = 0·5 mm. The figure shows that
increasing the shield thickness by 50% will decrease the flux by 25%. The inset shows the magnetic flux versus the displace-
ment of the current filament along the x-axis for parameter values: I = 1 A, ρ0 = 5 mm, b = c = 0·5 mm, p = 1. The flux is
given in units of 10−10 Wb, and the horizontal axis is in mm. The solid lines on the figure are the analytical solution obtained
from (45), and solid dots are the numerical solutions. In the numerical approach the height of the cylinder was taken to be
20ρ0 and the outer boundary was placed at 2ρ0. The edges of the cylinder in the cut cross-section were divided into 1000
segments, the wire was represented by a cylinder of diameter 1 mm and its circumference was divided into 100 sections. The
edges in the model, parallel to the superconducting cylinder axis were divided into 30 segments

We solve Eq. 35 by separation of variables, and employing the Fourier-cosine transform along the boundary
ρ = ρ0, we obtain:

ζn = −μ0I
2π

1
n

{
−
(
ρρ′

ρ2
0

)n

�(ρ0 − ρ)+
(
ρ

ρ′

)n

�(ρ′ − ρ)+
[

2(−1)n −
(
ρ′

ρ

)n

�(ρ0 − ρ)

]
�(ρ − ρ′)

+ 1

log
(

2pρ0
c

)
(
ρ′

ρ0

)n ∫ ∞

0

J0(cλ) cos(λz)
λ

[
In(λρ)

I′
n(λρ0)

�(ρ0 − ρ)+ Kn(λρ)

K′
n(λρ0)

�(ρ − ρ0)

]
dλ

}
, (49)

where J0 is the Bessel function of the first kind, In and Kn are the modified Bessel functions of the first
and second kind, respectively. Substituting the above expression for ζn in Eqs. 34 and 30 gives the explicit
solution for the magnetic field. Figure 8 shows the example of the magnetic field in the vicinity of the cut.

In the above derivation, the symmetry of the shield with regard to the z-axis enabled us to find the
derivative of the potential along the gap region. For the asymmetric case, with boundary conditions given
only for positive z, a Green’s functions method was developed for a wave equation in reference [26].
Another example of such an asymmetric case was considered more recently in [27], with solution for the
scalar electric potential obtained by using the Wiener–Hopf method.

4 Ratio error

The performance of a CCC is evaluated by considering the ratio error, whereby the magnetic field in the
centre of the torus window is sensed by a SQUID in two cases. In one case, two currents of the same
magnitude are passed in the opposite directions with filaments placed symmetrically around the axis of the
shield. In the other case the current flows through one of the filaments only. The CCC ratio error is then
given by the ratio of the magnetic field detected in each case.
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Fig. 8 Magnetic field versus the distance from the z-axis for the parameters: I = 5 A, ρ0 = 5 mm, ρ′ = c = 0·5 mm, z = 4 mm,
φ = π/3 and p = 1·5. The solid line on the graph is the analytic solution obtained from formulas (30), (34) and (49). The solid
dots show the numerical solution obtained by solving Maxwell’s equations using the finite-element method with the boundary
condition of zero normal component of the magnetic field on the surface of the superconductor. The height of the cylinder
was 100 mm. B is expressed in μT and r in mm

Following the procedure of Sect. 3 to derive ζn, for the case of two filaments located at (ρ = ρ′,φ = 0)
and (ρ = ρ′,φ = π) through which equal amplitude currents flow in opposite directions and using the
expression for the magnetic field of the loop of radius a in free space, we obtain for the ratio error r of the
CCC, in the lowest order of ρ′/ρ0:

r = 4
π

1

log
(

2pρ0
c

) ρ′

ρ0

∫ ∞

0

J0(xc/a)K1(x)
x [K0(xρ0/a)+ K2(xρ0/a)]

dx. (50)

Using the asymptotic behaviour of Bessel functions for small arguments 0 < x � √
α + 1:

Jα → 1
�(α + 1)

(x
2

)α
, Kα →

{− log(x/2)− γ , α = 0,
�(α)

2

(
2
α

)α
, α > 0,

we approximate the kernel in (50) by the Lorentzian 1
2

(
ρ0
a

)2 1
1+x2 and obtain a simplified expression for

the ratio error:

r = 1

log
(

2pρ0
c

) ρ′ρ0

a2 . (51)

There is little experimental evidence available at this stage to compare with the theoretical result, but by
substituting the values for the parameters from [17]: ρ′ = 1·5 mm, ρ0 = 5 mm, a = 15 mm, c = 0·5 mm,
and taking p = 1, we obtain for the ratio error r ∼ 1%, which is consistent with experiment.

The above formula shows that the easiest way to decrease this value in practice is by increasing the
radius a and concentrating the currents near the axis. The dependence of the error on cut thickness is
logarithmic; therefore, to reduce the error for example by a factor of 3 would require decreasing the cut
thickness to μm size. This is difficult but perhaps could be done by oxidizing the superconducting surface
over the cut area and clamping the shield.

5 Concluding remarks

We have considered the magnetic field of an HTS CCC. We have first considered the case of a toroidal
superconducting shield with an infinitesimal radial cut and obtained the expression for the magnetic vector
potential. By solving the Fredholm integral equation we have obtained an analytic expression for the
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current distribution on the outer surface. These findings will be useful for the sensitivity analysis of an HTS
CCC similar to those developed for a low-temperature superconducting CCC [12, 13].

In order to obtain the leakage flux of the magnetic field we have neglected the curvature of the torus;
that is, we have approximated the shield to be of a cylindrical shape. We have found the solution for the
magnetic scalar potential in the form of a Fourier-sine series which approaches the asymptotic expression
far away from the cut. In order to obtain the coefficients in this expansion, we have conformally mapped the
region of interest (the area outside the superconductor) in the azimuthal plane onto the positive imaginary
part of another complex plane. In this way, we have obtained the leakage flux through the cut as well as an
explicit expression for the magnetic field (in the limit of vanishing superconductor thickness). The analytic
results are in good agreement with numerical results obtained by a finite-element method. By extending
the consideration to include another filament inside the shield, we have obtained an expression for the
ratio error measured at the centre of the toroid. For the measurement of the field flux through a pickup
coil located at the torus window, this ratio can be obtained by integrating the flux through the half-plane
outside the cylindrical shield, using expression (34) with coefficients given by (49), and using expression
(27) for the toroidal shield.

The ratio error formula (51) shows that the error decreases by increasing the toroidal radius, and decreas-
ing the inner radius of the shield. According to the formula, the filaments should be centered around the
axis to minimize the error. The leakage flux (45) decreases with increasing the material thickness. The
cut width enters the ratio error only logarithmically, so considerable effort in its reduction is needed for
observable improvement. For the best performance, the superconducting shield can be surface treated over
the area of the cut, with the insulating layer being of the order of a micron, which would be thick enough
to prevent the tunneling current across the gap. In that case formula (51) shows that, in combination with
reducing the bore radius by a factor of three, the ratio error would be reduced by an order of magnitude,
for the same filament location and toroid radius.

Of interest for further study is the extension of the present work to several concentric superconducting
toroidal shields which reduce the ratio error by screening the cut, and a study of the performance of an
HTS CCC in the case of ac rather than dc currents.
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Appendix

In this appendix we show that for η0 � 1 we can map the boundary-value problem from a toroidal to a
cylindrical geometry. By using the transformation [28, p. 336]:

Pμ
ν− 1

2
(cosh η) = 22μ

�(1 − μ)(1 − e−2ν)μe(ν+ 1
2 )ν

F
(

1
2

− μ,
1
2

+ ν − μ; 1 − 2μ; 1 − e−2ν
)

, (52)

and expanding the hypergeometric function F(a, b; a + b; z) around z → 1, we have:

P1
− 1

2
(cosh η) ≈ − 1√

2π

log(2 cosh η)− γ − ψ(− 1
2 )√

cosh η
, (53)

where ψ(z) = �′(z)/�(z) is the digamma function. By using [28, p. 336]:

Qμ

ν− 1
2
(cosh ν) =

√
πeiμπ�( 1

2 + ν + μ)(1 − e−2η)μ

�(1 + ν)e(ν+ 1
2 )η

F
(

1
2

+ μ,
1
2

+ ν + μ; 1 + ν; e−2η
)

, (54)

and expanding F(a, b; c; z) around z → 0, we can write:

Q1
− 1

2
(cosh η) ≈ − π

2
√

2

1√
cosh η

. (55)



J Eng Math (2007) 57:99–114 113

By introducing the distance from the axis ρ = [(√x2 + y2 − a)2 + z2]1/2, and considering the inverse
transformations of (2), we obtain cosh η ≈ a/ρ. Substituting this in (53) and (55) we get for the n = 0 term
in (15):

− μ0I
2π

[
�(ρ′ − ρ) log

ρ′

ρ0
+�(ρ − ρ′) log

ρ

ρ0

]
. (56)

For the terms n ≥ 1 in (15) we use (52) and (54) and the expansions of F(a, b; a + b − n; z) around z → 1
for P1

n− 1
2

and the expansion of F(a, b; c; z) around z → 0 for Q1
n− 1

2
to obtain:

P1
n− 1

2
(cosh η) ≈ 2n

√
2π

�(n)

�(n − 1
2 )
(cosh η)n− 1

2 ,

Q1
n− 1

2
(cosh η) ≈ −

√
π

2n+ 1
2

�(n + 3
2 )

�(n + 1)
1

(cosh η)n+ 1
2

.
(57)

By substituting (57) in (15) we get the following expression:

− μ0I
2π

1
n

{
�(ρ′ − ρ)

(
ρ

ρ0

)n [(
ρ′

ρ0

)n

−
(
ρ0

ρ′
0

)n]
+�(ρ′ − ρ)

(
ρ

ρ0

)n [(
ρ′

ρ0

)n

−
(
ρ0

ρ′
0

)n]}
. (58)

By combining (56) and (58) we arrive at (28). By substituting (53), (55) and (57) in (27) we obtain (16),
which close to the shield η � η0 reduces to (29). In that way, the potentials away from the cut on the torus
in this approximation approach the expressions for the cylindrical shield.
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